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A direct numerical simulation of a supersonic turbulent boundary layer has been
performed. We take advantage of a technique developed by Spalart for incompressible
flow. In this technique, it is assumed that the boundary layer grows so slowly
in the streamwise direction that the turbulence can be treated as approximately
homogeneous in this direction. The slow growth is accounted for by a coordinate
transformation and a multiple-scale analysis. The result is a modified system of
equations, in which the flow is homogeneous in both the streamwise and spanwise
directions, and which represents the state of the boundary layer at a given streamwise
location. The equations are solved using a mixed Fourier and B-spline Galerkin
method.

Results are presented for a case having an adiabatic wall, a Mach number of
M = 2.5, and a Reynolds number, based on momentum integral thickness and wall
viscosity, of Reθ′ = 849. The Reynolds number based on momentum integral thickness
and free-stream viscosity is Reθ = 1577. The results indicate that the Van Driest
transformed velocity satisfies the incompressible scalings and a small logarithmic
region is obtained. Both turbulence intensities and the Reynolds shear stress compare
well with the incompressible simulations of Spalart when scaled by mean density.
Pressure fluctuations are higher than in incompressible flow. Morkovin’s prediction
that streamwise velocity and temperature fluctuations should be anti-correlated, which
happens to be supported by compressible experiments, does not hold in the simulation.
Instead, a relationship is found between the rates of turbulent heat and momentum
transfer. The turbulent kinetic energy budget is computed and compared with the
budgets from Spalart’s incompressible simulations.

1. Introduction
The study of supersonic turbulent boundary layers has primarily consisted of

experimental investigations with a few recent attempts at numerical simulation. The
experimental measurements are limited to basic turbulence quantities and by the
spatial resolution near the wall, among other difficulties. The simulations have been
hampered by large cost and low Reynolds number. The goal of the present work
was to identify similarities and differences between compressible and incompressible
boundary layers, as well as to test the applicability of Morkovin’s hypothesis and the
strong Reynolds analogy.
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1.1. Background and motivations

Though most flows encountered in nature and in aerospace applications are turbulent
or partially so, turbulence remains one of the most elusive subjects in aeronautics.
There is no general turbulence theory or model. With the addition of compress-
ibility the turbulence problem becomes even more complex. For instance, in bound-
ary layers at high Mach numbers, large temperature gradients develop between the
wall region and the outer layer. These gradients result in large variations of mean
fluid properties, such as viscosity, which result in significant changes in the Reynolds
number across the wall-normal direction. As the Mach number becomes hyper-
sonic, shocks may form, dilatation becomes important, and baroclinic terms may be
significant.

To account for the effects of compressibility, many theories have been developed
based on a weakly compressible hypothesis (see the review by Spina, Smits & Robin-
son 1994). The hypothesis is that, at moderate free-stream Mach numbers (M . 5
according to Morkovin 1962), dilatation is small and any differences from incom-
pressible turbulence can be accounted for by fluid property variations across the
layer. This has long been appreciated and is the basis of the Van Driest (1951, 1956)
transformation and the Morkovin (1962) hypothesis. Morkovin postulates that in
the weak compressibility regime normal stresses will obey the incompressible scaling
when they are multiplied by the local mean density divided by the free-stream value.
Even at moderate free-stream Mach numbers the fluctuating and turbulence Mach
numbers are small and one would not expect eddy shocklets to be a predominant
feature of the flow field. However, at higher free-stream Mach numbers the turbulent
velocity fluctuations are more likely to be supersonic leading to increased compress-
ibility effects. Further support for the weak compressibility assumption is provided by
the fact that large-scale structures are convected at 0.9U∞ (Spina, Donovan & Smits
1991) which results in a small relative Mach number between the large eddies and the
mean flow. Finally, another measure of compressibility, the gradient Mach number
(Sarkar 1995), is also small in the boundary layer. The gradient Mach number is
based on the velocity difference across the scale of an eddy.

The validity of the weak compressibility theories in compressible boundary layers
has been checked in a variety of experiments over the years (see these and the
references therein: Gaviglio 1987; Smith & Smits 1993; and Eléna & Gaviglio
1993). However, in most experiments the data reported have been limited to simple
turbulence quantities such as the mean and RMS velocity and temperature. Detailed
correlation statistics needed to directly check the validity of Morkovin’s hypothesis are
only available from a few experiments. The data from the direct numerical simulations
reported here provide an opportunity to evaluate these theories in more detail than
has been previously possible.

1.2. Previous simulations

Although there have been numerous experimental investigations of the compressible
turbulent boundary layer, there have been relatively few attempts at direct numerical
simulation of this flow. To date there have been three such attempts known to us: (i)
Guo & Adams (1994) and Adams et al. (1998); (ii) Rai, Gatski & Erlebacher (1995);
and (iii) Hatay & Biringen (1995).

The simulations of Guo & Adams and Adams et al. had an isothermal wall at the
laminar adiabatic wall temperature and, like the current simulations, used a method
that transformed the spatially evolving boundary layer into a parallel, streamwise
homogeneous flow. To obtain their transformed parallel shear flow, Guo & Adams
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(1994) require that the spatial mean of the periodic simulation obey the parabolized
time-mean equations. These equations contain streamwise derivatives of Reynolds
stresses which are obtained by performing simulations at different downstream sta-
tions. This approach leads to forcing terms in the mean equations that are similar
to those produced by Spalart’s approach, except that terms involving the coordinate
transformation are not present.

Guo & Adams (1994) and Adams et al. (1998) simulate boundary layers at three
Mach numbers M = 3, 4.5 and 6. In Guo & Adams, these simulations were performed
in relatively small spatial domains; in particular, for M = 3 the domain was 16 times
smaller in streamwise by spanwise area than those reported here. The effects of
these small domains is evident in their statistical results, most notably the two-point
correlations. Such small domains introduce considerable uncertainty regarding the
impact of the domain size on the dynamics of the boundary layer, though experience
with the minimal channel (Jimenez & Moin 1991) suggests that basic statistical
quantities such as turbulence intensities should be reasonably accurate. One of the
major design considerations of the current simulations was to avoid the uncertainties
associated with such small simulation domains.

Unlike the current simulations and those of Guo & Adams, Rai et al. (1995)
simulated a true spatially evolving boundary layer. They simulated a very long
streamwise domain from a laminar inlet, through transition to a fully turbulent
boundary layer. This clearly avoids any uncertainties that might be associated with
the approximate spatial growth treatment used here and in Guo & Adams, but
the cost is that the spatial domain that must be simulated is spectacularly large.
As a result, even with the extremely large problem size they were able to run (17
million nodes), Rai et al.’s resolution was over a factor of 3 coarser in the streamwise
direction (measured in wall units) than the current simulations. Such coarse resolution
introduces uncertainties that are different from those associated with the approximate
spatial growth treatment. Simulations like that reported here, which can be run with
much better spatial resolution, are useful for assessing the impact of the coarse
resolution that must be used in a simulation like that of Rai et al.

Finally, Hatay & Biringen (1995) performed a parallel-flow boundary layer cal-
culation at M = 2.5. However, the data they present suggest that the turbulence is
not being sustained. Indeed, the turbulence intensities appear to drop significantly
over the course of the simulation. It is possible that the Reynolds number of their
simulation is too low to sustain turbulence. The authors quote a Reynolds number
based on displacement thickness of Reδ∗ ≈ 1000, which corresponds to a momentum-
thickness Reynolds number of Reθ′ ≈ 140. Fernholz & Finley (1980) call flows in the
Reynolds number range of 300 6 Reθ′ 6 6000 transitional, based on an analysis of
mean velocity profiles. While their definition of transitional flows does not preclude
having sustained turbulence below Reθ′ ≈ 300, the Reynolds number in Hatay &
Biringen’s simulation is well below the lower limit of this range.

Clearly, the direct numerical simulation of a compressible turbulent boundary
layer is a difficult undertaking, in which various compromises must be made to make
the simulation practical. In the research reported here, we have pursued the most
reliable compressible boundary layer simulation that we were able to do with current
computation capabilities, choosing good spatial resolution and adequate domain
size over true spatial evolution. Such a simulation allows a much more detailed
analysis of compressibility effects in the boundary layer than has been previously
possible. The current simulation will be described and analysed in what follows,
which includes simulation details (§ 2), turbulence statistics (§ 3), Reynolds analogies
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(§ 4), the turbulent kinetic energy budget (§ 5) and conclusions (§ 6). The details of the
approximate spatial growth treatment are given in the Appendix.

2. Simulation details
The details of the current simulation are provided in this section. The parameters

used in the compressible turbulent boundary layer simulation are compared with
the incompressible boundary layer simulations of Spalart (1988); the incompressible
channel simulation of Kim, Moin & Moser (1987); and the compressible boundary
layer simulations of Guo & Adams (1994) and Rai et al. (1995).

2.1. Simulation method

One difficulty in performing compressible turbulent boundary layer simulations is
that the streamwise direction is inhomogeneous. This precludes the use of periodic
boundary conditions, and as a result FFTs, in this direction. Furthermore it neces-
sitates use of a long entrance length for the flow to adjust from artificial in-flow
conditions.

Several techniques have been developed to address one or both of these issues
for incompressible flow (Spalart & Leonard 1987; Spalart 1988; Spalart & Watmuff
1993; Bertolotti, Herbert & Spalart (1992); and Lund, Wu & Squires 1998). Of these
we utilize the one developed in Spalart & Leonard (1987) and Spalart (1988). Spalart
recognized that the slow growth of the boundary layer in the streamwise direction
makes it possible to treat the turbulence as approximately homogeneous in this
direction. The slow growth is taken into account by using a coordinate transformation
and a transformation of dependent variables as in multi-scale asymptotics. The result
is a modified system of equations (Navier–Stokes plus some extra terms, which we shall
call ‘slow growth terms’) that is homogeneous in both the streamwise and spanwise
directions, and which represents the state of the boundary layer at a given streamwise
location (or, equivalently, a given thickness). Using Spalart’s method, the boundary
layer can be simulated separately at each streamwise station. A detailed description
of this method and the modified set of equations can be found in the Appendix.

The resulting equations are solved using a mixed Fourier-spectral and B-spline-
Galerkin method (Guarini 1998). The dependent variables (specific volume, σ =
1/ρ; momentum, m = ρu; and pressure, p) are expanded in terms of a Fourier
representation in the horizontal directions and a third-order (quadratic) B-spline
representation in the wall-normal direction. The Fourier directions are de-aliased
using the 3/2-rule, where all nonlinear terms are calculated using 3/2 times the
number of modes used to advance the solution. Quadratic nonlinearities are fully de-
aliased using this rule while higher-order nonlinearities are only partially de-aliased.
B-splines have a variety of good numerical properties, and have been used successfully
in the incompressible pipe flow simulation of Loulou (1996) and the compressible jet
of Rao (1997). B-splines have high resolving power, allow easy implementation of
boundary conditions, and allow the use of stretched grids. More details on B-splines
may be found in: De Boor (1978), Kravchenko, Moin & Moser (1996), and Shariff
& Moser (1998). Their use in the present work is described in Guarini (1998). In
the wall-normal direction, Giles’ (1989, 1990) second-order non-reflecting boundary
conditions are used at the free-stream boundary and adiabatic no-slip boundary
conditions are used at the wall. This combination of splines and Fourier methods
produces a very accurate numerical method. For the time discretization the mixed
implicit/explicit method of Spalart, Moser & Rogers (1991) is used. All terms are
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Sim. M Reθ Nx ×Nz L+
x × L+

z ∆x+ × ∆z+

S1 0.0 225 — — —
S2 0.0 300 85× 64 2680+ × 670+ 31.5+ × 10.5+

S3 0.0 670 171× 128 4900+ × 1225+ 28.7+ × 9.50+

S4 0.0 1410 288× 213 11400+ × 2850+ 39.6+ × 13.4+

KMM 0.0 — 192× 160 2300+ × 1150+ 12.0+ × 7.00+

GA 3.0 3015 192× 144 527+ × 300+ 2.74+ × 2.08+

GA 4.5 2618 180× 144 260+ × 155+ 1.44+ × 1.08+

GA 6.0 2652 180× 128 229+ × 137+ 1.27+ × 1.07+

Rai 2.25 6000 971× 321 full spatial 27.0+ × 10.4+

Present 2.5 1577 256× 192 2269+ × 1134+ 8.86+ × 5.91+

Table 1. Comparison of parameters used in the incompressible simulations of Spalart (1988) (S1–S4)
and Kim et al. (1987) (KMM); the compressible simulations of Guo & Adams (1994) (GA) and
Rai et al. (1995); and the present simulation.

treated explicitly except for the highest wall-normal derivative in the viscous, pressure
gradient, and ‘acoustic coupling term’

γσp
∂m2

∂x2

, (2.1)

that appears in the pressure equation. In the implicit treatment, non-constant coeffi-
cients that vary in the horizontal directions cannot be easily treated. Both the viscous
and acoustic coupling terms are split into a term with coefficients (viscosity and σp
respectively) varying in the wall-normal direction only, which is treated implicitly,
and the remainder, which is treated explicitly.

2.2. Choice of parameters

A turbulent boundary layer at a Mach number of 2.5 and a Reynolds number based
on displacement thickness of Reδ∗ = 6258 was simulated. This results in a Reynolds
number based on momentum integral thickness and wall viscosity of Reθ′ ≈ 849. The
Reynolds number based on momentum integral thickness and free-stream viscosity
was Reθ ≈ 1577. The Mach number was chosen because of the availability of
experimental data and because it is in a range where we might begin to see some
compressibility effects.

There are two important sets of parameters, the grid size (Nx × Ny × Nz) and
the domain size (Lx × Ly × Lz), that determine the overall quality/accuracy of the
simulation. The coordinate system is oriented such that the x-, y-, and z-directions
are the streamwise, wall-normal, and spanwise directions, respectively (in this paper
we use a mixed index or symbol notation where x1, x2, and x3 correspond to x,
y, and z, respectively). The current simulation has 256 × 209 × 192 (Nx × Ny × Nz)
Fourier–B-spline modes and a domain size of 2269+ × 875+ × 1134+ (Lx × Ly × Lz),
where y+ = yuτ/νw . Here νw is the kinematic viscosity at the wall and uτ is the
friction velocity (τw/ρw)1/2, where τw and ρw are the shear stress and density at the
wall, respectively. The domain and grid parameters were selected to provide sufficient
resolution in a domain that is large enough to eliminate most finite domain size
effects. That this is the case is demonstrated below.

One way to assess the adequacy of the resolution and domain size is by comparison
to DNS of similar flows. The resolution and domain size used in the current simulation
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Figure 1. One dimensional energy spectra Euαuα . Plotted versus (a) kx at y+ = 4; (b) kx at y+ = 80;
(c) kz at y+ = 4; (d) kz at y+ = 80. , Streamwise velocity component; , wall-normal
velocity component; , spanwise velocity component.

are compared with the incompressible boundary layer simulations of Spalart (1988)
(S1–S4), the incompressible channel flow of Kim et al. (1987) (KMM) and the
compressible boundary layer simulations of Guo & Adams (1994) (GA) (table 1).
The resolution required in the M = 3 simulation of Guo & Adams was significantly
finer than that of the incompressible simulations or the present simulation. The
reason for Guo & Adams’ extremely fine resolution is not clear. However, the need
for increased resolution of the current simulation relative to KMM is due to sharp
density gradients present in the compressible flow. KMM is used for comparison
because their resolution is better than Spalart’s simulations, as determined by the
drop in energy spectra. The adequacy of the spatial resolution was confirmed by
examining the spectra, where Euαuα is the energy spectrum for the velocity component
ui. Examples are shown in figure 1. These spectra and those at other y-locations suggest
the resolution is adequate. Another indication of the adequacy of the resolution is
the value of kmaxη, where kmax is the maximum wavenumber in x and η is the
local Kolmogorov scale. The maximum and minimum of this value in the current
simulation are 1.6 and 0.5, respectively, which is considered adequate. For comparison
the simulation of Kim et al. (1987) had values of 1 and 0.4 for the maximum and
minimum, respectively.
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Figure 2. Two-point correlations Quαuα . Plotted versus (a) δx/δ
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∗ at y+ = 150; (c)
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∗ at y+ = 4; (d) δz/δ
∗ at y+ = 150. , Streamwise velocity component; , wall-normal

velocity component; , spanwise velocity component.

The periodic domain size of the current simulation was selected to ensure that the
streamwise and spanwise two-point correlations are nearly zero for large separations,
where the two-point correlation for the velocity component ui is Quαuα . As is evident
in figure 2, the near-wall correlations are indeed near zero for large separations,
though they could be better for the streamwise component. However, far from the
wall (y+ = 150) low-level large-scale coherence is evident in the correlation, perhaps
due to acoustics as suggested by Coleman, Kim & Moser (1995).

In the wall-normal direction, the B-splines were defined on a non-uniform set of
knots (grid points) which is given by

ti = (∆ymax − ∆ymin)

[
iNm

Nk

+ (e−αiNm/Nk − 1)/α

]
+

∆ymin iNm

Nk

, (2.2)

where α = 0.14, Nm = 1.09, Nk = 207, ∆ymin = 1.0, and ∆ymax = 110.0. With this
distribution there were 13 grid points in the first 9 wall units, including the grid point
at the wall. The minimum grid spacing in the wall-normal direction was 0.48+ wall
units while the maximum was 7.8+ wall units at the free-stream boundary, which was
located at y+ = 875.
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Figure 3. Turbulent and fluctuating Mach numbers as functions of y/δ: , turbulent Mach

number, Mt; , RMS of Mach number fluctuations, (M ′2)1/2; , turbulent Mach number
with spanwise component removed.

2.3. A note on averaging

In the results that follow, both Reynolds and Favre averaging are used depending
on simplicity of presentation and conventions used in the papers to which we are
comparing. In each case care will be taken to distinguish between the two.

The Reynolds average of f over the x- and z-directions will be denoted by f̄, and
fluctuations about this mean will be denoted by f′. The Favre average over the x-
and z-directions, f̃, is a density-weighted average:

f̃ =
ρf

ρ
. (2.3)

Fluctuations about the Favre average will be denoted by f′′.

2.4. The turbulent Mach number

One convenient measure of the turbulent compressibility effects is the fluctuating
Mach number, M ′, which is just the RMS fluctuation of the Mach number. A similar
quantity is the turbulent Mach number given by

Mt =
(u′iu′i)1/2

ā
. (2.4)

Morkovin (1962) suggests that the turbulence is only weakly affected by compressibil-
ity provided M ′ . 0.2 (0.3 according to Spina et al. 1994). Despite the relatively low
Mach number, the peak values of M ′ and Mt in the simulation are approximately 0.3
(figure 3). Nevertheless, as will be shown in § 3, Morkovin’s density scaling and the Van
Driest transformation still apply. The shoulder in figure 3 is at (M ′2)1/2 ≈ 0.25, while
the experimental data shown in Spina et al. (1994), for M∞ = 2.3 and Reθ = 4700,
have a shoulder at (M ′2)1/2 ≈ 0.20. The reason for the difference is most likely the
neglect, in the experiments, of the spanwise velocity in calculating the Mach num-
ber. As one can see in figure 3, the turbulent Mach number is consistent with the
experimental value of 0.2 when the spanwise velocity component is not included.

A measure of intrinsic compressibility is the ratio of mean-square dilatation fluc-
tuations to mean-square vorticity fluctuations:

(∂u′i/∂xi)(∂u′j/∂xj)/ω′kω′k. (2.5)
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Figure 4. Comparison of the computational Cf with the experimental data of Coles (1954): ∗,
simulation data point; ◦, experimental data points (2.2 6M 6 2.8); , Van Driest II (Bardina
et al. 1997).

This ratio measures the level of compressibility, as given by dilatation, relative to the
turbulent motion, as given by enstrophy. In the simulation we find that this ratio is
approximately 5× 10−4 throughout the boundary layer.

3. Turbulence statistics
In this section, several turbulence statistics are examined to evaluate their consis-

tency with accepted experimental and computational results.
To obtain statistics, averages are computed over the streamwise and spanwise

directions of each field; then an ensemble average over 55 fields spanning 31.33 time
units was calculated. Time is non-dimensionalized by δ∗/a∞. The flow was determined
to be stationary when several quantities (Cf , θ, uτ, Re

′
θ , and Tw) began to oscillate

about a mean value.

3.1. Mean flow

The skin friction coefficient is defined as

Cf = 2

(
uτ

U∞

)2
ρ̄w

ρ̄∞
. (3.1)

In the simulation the skin friction coefficient was found to be Cf ≈ 0.00282. There
are very few experimental studies at the low Reynolds number of the simulation.
However, the simulation compares favourably with the experimental results compiled
by Coles (1954) and the skin friction correlation given in Bardina, Huang & Coakley
(1997) based on the Van Driest II skin friction transformation (figure 4).

The Van Driest transformed velocity, Uc, is plotted in wall units in figure 5. Uc is
defined as

Uc =

∫ U

0

(Tw/T )1/2 dU. (3.2)

Experiments have shown thatUc satisfies the same scaling laws as the mean streamwise
velocity in incompressible flow. On the plot we have included the linear sub-layer
relation, U+

c = y+, the standard log-law, and a composite profile that consists of
Reichardt’s (1951) inner layer profile and Finley’s wake function (Cebeci & Bradshaw
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Figure 5. Van Driest transformed velocity in wall units: , DNS time average; , linear
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c = y+; , log-law U+
c = (1/0.40) ln (yuτ/νw) + 4.7; , Reichardt’s profile with

Finley’s wake function; , Coles’ profile.

1977):

Uc

uτ
=

1

κ
ln

(
1 + κ

yuτ

νw

)
+ C1

[
1− e−yuτ/(η1νw) −

(
yuτ

η1νw

)
e−yuτb/(νw)

]

+
1

κ

[(y
δ

)2 −
(y
δ

)3

+ 6Π
(y
δ

)2 − 4Π
(y
δ

)3
]
, (3.3)

where δ is the y location at which Uc(y = δ) = Uc∞ , C1 = −(1/κ) ln (κ) + C , η1 = 11,
and b = 0.33. This profile is used in the Appendix to calculate the slow-growth terms.
In addition, the more commonly cited Coles’ profile (Coles 1956) is shown. In the
region of 30 6 y+ 6 70, the simulation data fall on the log-law curve, where we
have chosen the constants κ = 0.40 and C = 4.7 for the plot; κ was determined
by finding the minimum of y+(∂U+

c /∂y
+) as a function of y+. Using this value and

the location of the minimum, C was then calculated. These values compare well
with those of Spalart (1988), and κ is within the range of values quoted in the
literature (see Smits & Dussauge 1996). At low Reynolds numbers the log-region
becomes vanishingly thin making the determination of κ and C difficult. There is also
some disagreement as to whether or not the values are Reynolds number dependent
at the low Reynolds number of the simulation (Spalart 1988). The value of Π
for the time-averaged profile was Π = 0.25, determined from the equations in the
Appendix. Reichardt’s ‘basic’ profile with Finley’s wake function gives a rather good
representation of Uc throughout the boundary layer. Since this is the profile shape
assumed when computing the slow streamwise derivatives (see the Appendix), the
good agreement implies that the assumed profile does not introduce a significant
error in the computation of these derivatives. It is interesting to note that if we use
U rather than the transformed velocity Uc the values of κ and C are 0.477 and 2.64,
respectively, which are quite different from the incompressible values.

3.2. RMS velocity, pressure, and vorticity

When normalized by uτ the turbulence intensities from the current compressible
boundary layer are lower than the intensities from the incompressible boundary
layer (figure 6a). Morkovin (1962) predicted that scaling by the square root of
the mean density profile should collapse RMS data for the streamwise velocity
component and possibly the spanwise and wall-normal components. When this scaling
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Figure 6. RMS velocity profiles plotted versus y/δ, (a) scaled by 1/uτ, and (b) scaled by
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Lines correspond to the compressible simulation and symbols are used for Spalart’s incompress-
ible simulations: , streamwise velocity component; , wall-normal velocity component;

, spanwise velocity component; +, Spalart (Reθ = 1410); ∗, Spalart (Reθ = 670).

is used there is good agreement for all three velocity components (figure 6b). In
the experiments good collapse is obtained for the streamwise component but the
experiments are inconclusive with respect to the collapse of the other two components
(Smits & Dussauge 1996). Smits & Dussauge (1996) attribute this to both the
difficulty in measuring the spanwise and wall-normal components and the scarcity of
measurements of these two components.

There are two additional points which need to be mentioned in connection with
figure 6. The first is that Reθ , based on local viscosity in the compressible simulation,
varies across the boundary layer from 849 to 1577. Spalart’s (1988) two simulations
at Reθ = 670 and 1410 span this range. This is important because in y/δ units,
the location of the peaks in the intensities moves toward the wall, since it remains
approximately fixed in wall units. Further, Spalart showed that at these low Reynolds
numbers, the magnitude of the peaks in intensities increases with Reynolds number.
The second issue concerns the choice of δ in figure 6. As discussed by Spalart, the
collapse of the data over a wide range of Reynolds numbers is sensitive to the choice
of δ. In making our comparison, we used a definition of δ based on the composite
profile of (3.3) and made no effort to find a definition that would better collapse the
data. This might account for the differences that are evident at y > 0.65δ.

In the compressible simulation the pressure fluctuations, when scaled by ρwu
2
τ ,

are larger than those found in the incompressible simulations through most of the
boundary layer (figure 7). The peak pressure fluctuations are larger than Spalart’s
Reθ = 670 simulation and occur at nearly the same location. The value of the RMS
pressure at the wall and at the peak are (p′rms)w/(ρwu2

τ) ≈ 2.7 and (p′rms)max/(ρwu
2
τ) ≈ 3.0,

respectively. In the free stream the pressure fluctuations approach (p′rms)∞/(ρwu2
τ) ≈

0.47. This is comparable to the value of the radiated pressure measured by Laufer
(1964) of (p′rms)∞/(ρwu2

τ) ≈ 0.4.
RMS vorticity profiles for the present simulation agree very well with those found

in Spalart’s incompressible simulations when normalized by u2
τ/νw (figure 8) and

plotted in wall units, with the compressible results being slightly larger than the
incompressible simulations away from the wall. Note that from Spalart’s data it is
clear that near the wall the maximum may be Reynolds number dependent. The
near-wall RMS vorticity is shown plotted in wall units here because the wall scaling
is known to (approximately) collapse such profiles for different Reynolds numbers in
incompressible flows, and indeed in y/δ units our data did not collapse with that of
Spalart’s.
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Figure 7. RMS pressure fluctuations versus y/δ: , compressible DNS; +, Spalart
(Reθ = 1410); ∗, Spalart (Reθ = 670); ×, Spalart (Reθ = 300).

0.3

0.2

0.1

0 10 20 30 40 50

yuτ/îw

0.4

x
i′2 î

w
/u

2 τ
√
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, ω′21 ; , ω′22 ; , ω′23 ; +, Spalart (Reθ = 1410); ∗, Spalart (Reθ = 670).

3.3. Reynolds shear stress

Reynolds averaging the momentum equation,

∂ρui

∂t
= − ∂

∂xj
{ρuiuj} − ∂p

∂xi
+

1

Re

∂τij

∂xj
, (3.4)

we get

∂ρ̄ũi

∂t
= − ∂

∂xj
{ρ̄ũiũj + ρu′′i u′′j } − ∂p̄

∂xi
+

1

Re

∂τ̄ij

∂xj
. (3.5)

The sum of the Reynolds shear stress and mean shear stress terms is

∂

∂x2

{
−ρu′′i u′′2 +

1

Re

[
µ
∂ū1

∂x2

+ µ′
(
∂u′1
∂x2

+
∂u′2
∂x1

)]}
. (3.6)

In incompressible boundary layers a constant total stress region is observed near the
wall. The constant-stress region is consistent with the law of the wall and is also
present in the current simulation (figure 9). The constant-stress region extends to 30
or 40 wall units above the wall.

As was the case for the turbulence intensities, u′v′ agrees with the incompressible
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τ: , compressible
DNS; +, Spalart (Reθ = 1410); ∗, Spalart (Reθ = 670).

results when scaled by the local mean density (figure 10). This agreement is not as
close as for the intensities, but this is primarily due to the square root in the definition
of the intensities.

4. Reynolds analogies
For incompressible laminar boundary layers, the similarity of the momentum and

energy equations allows one to approximately relate quantities pertaining to heat
transfer with quantities pertaining to momentum transfer. O. Reynolds discovered
this principle in its simplest form. The ‘Reynolds analogy’ has been extended with
additional approximations to the compressible and turbulent cases. Morkovin (1962)
suggests that a Reynolds analogy might apply to compressible turbulence, a concept
known as the ‘strong Reynolds analogy (SRA)’. More recently, other expressions of
a Reynolds analogy have been formulated by several authors (Gaviglio 1987 and
Huang, Coleman & Bradshaw 1995), and these will also be studied below.

4.1. The strong Reynolds analogy

To investigate the validity of the strong Reynolds analogy, and its consequences, a
brief review of its derivation and a critical examination of the underlying assumptions
are given in this section. The analogy is based on the observation that the transport
equations for mean velocity and mean total enthalpy, ht = CpT+u2

i /2, for a stationary,
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zero-pressure-gradient boundary layer,

ρ̄ũ1

∂ũ1

∂x1

+ ρ̄ũ2

∂ũ1

∂x2

=
∂

∂x2

{
µ̄
∂ũ1

∂x2

− ρu′′1u′′2
}
, (4.1a)

ρ̄ũ1

∂h̃t

∂x1

+ ρ̄ũ2

∂h̃t

∂x2

=
∂

∂x2

{
µ̄

P r

∂h̃t

∂x2

− ρu′′2h′′t
}
, (4.1b)

have the same form if the Prandtl number is 1. If the Prandtl numbers are different,
the equations are still of the same form provided the molecular diffusivity can be
neglected, which is true in a turbulent boundary layer, except very near the wall. The
two equations, however, have different boundary conditions.

The total temperature, Tt, is defined by the relationship ht = CpTt. If one assumes
that gradients of mean total temperature and velocity in x can be neglected and
further (without justification) that

T ′′t = Cu′′1 , (4.2)

one can eliminate the turbulent terms in the mean transport equations and solve for
T̃ t in terms of ũ1,

T̃ t = Cũ1 + D. (4.3)

This result was first stated in a slightly different form by Young (1953)† and later
by Morkovin (1962), who called assumption (4.2) the strong Reynolds analogy. Since
∂T̃ t/∂y = 0 at an adiabatic wall and the velocity gradient, ∂ũ1/∂y, is non-zero at the
wall, it follows that the constant, C , must be zero. This implies that the mean total
temperature is constant with value T̃tw and the total temperature fluctuations are
zero. In the current simulation the maximum deviation of the mean total temperature
from a constant is about 7%, thus approximately verifying the result for the mean.
However, in the simulation, RMS total temperature fluctuations are comparable in
magnitude to the static temperature fluctuations (see figure 11), and are thus not
negligible. The discussion that follows addresses the validity of (4.2), with C = 0, and
the relationships derived from it.

The fact that measured total temperature fluctuations are not negligible was rec-
ognized by Morkovin (1962). Nonetheless, relations derived assuming that they are
negligible have been widely used in the literature. These relations can be obtained by
writing the definition of total temperature and subtracting its Favre mean:

CpT
′′
t = CpT

′′ + ũiu
′′
i +

u′′i u′′i
2
− ũ′′i u′′i

2
. (4.4)

By retaining only the terms that are linear in the fluctuations, and assuming that
ũ1u

′′
1 � ũ2u

′′
2 and ũ1u

′′
1 � ũ3u

′′
3, we get

CpT
′′
t = CpT

′′ + ũ1u
′′
1 . (4.5)

So far, the approximations made are excellent. One can verify this by considering
the correlation coefficient Ru′′1(T ′′t −T ′′) between streamwise velocity fluctuations and the
difference between total and static temperature fluctuations. The correlation coefficient
differs from unity by less than 0.9% for y/δ > 0.05, showing that (4.5) is very accurate.

In Morkovin’s analysis, the SRA is invoked to argue that the total temperature

† Young calls (4.3) and (4.2) solutions to the equations. This terminology is imprecise and attaches
too much legitimacy to (4.3) and (4.2). We prefer not to identify the two as solutions, but rather to
say that the assumption (4.2) implies (4.3).
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fluctuations are negligible compared to the static temperature fluctuations, and thus
(4.5) becomes

CpT
′′ + ũ1u

′′
1 ≈ 0, (4.6)

which is not valid, as discussed above (figure 11). Substituting γR/(γ − 1) for Cp and
defining the Mach number, Ma:

M2
a =

ũ2
1

γRT̃
, (4.7)

(4.6) can be rewritten:

T ′′

T̃
= −(γ − 1)M2

a

u′′1
ũ1

. (4.8)

The (questionable) relations, (4.6) and (4.8), between T ′′ and u′′1 have several statistical
consequences which are given by

(T ′′2)1/2/T̃

(γ − 1)M2
a (u
′′2)1/2/ũ

≈ 1, (4.9a)

−Ru′′1T ′′ ≈ 1, (4.9b)

Prt =
ρu′′1u′′2(∂T̃ /∂y)

ρu′′2T ′′(∂ũ1/∂y)
≈ 1. (4.9c)

These are three of the five SRA relationships Morkovin (1962) presented. Equations
(4.9a) and (4.9b) are direct consequences of (4.6), whereas (4.9c) is obtained by
multiplying (4.6) by ρu′′2, averaging, and assuming that

ũ1 = −Cp
(
∂T̃

∂y

)/(
∂ũ1

∂y

)
, (4.10)

which comes from the mean total temperature equation when it is assumed that T̃ t

is constant and that nonlinear fluctuating terms and velocity components other than
ũ1 are small.

From the simulation results we see that equation (4.9a) is satisfied for y/δ < 0.6
(figure 12). However, in the same region, (4.9b) and (4.9c) are not satisfied (see figures
13 and 14). The correlation Ru′′1T ′′ is approximately 0.6 through most of the boundary
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(M = 2.3, Reθ = 5650) (Gaviglio 1987); +, Dussauge (M = 1.7, Reθ = 5700) (Gaviglio 1987); ◦,
Smith & Smits (1993) (M = 2.9, Reθ = 77 600). (b) Comparison with incompressible experiments:

, time average of DNS; ×, Fulachier (Reθ = 5000) (Gaviglio 1987); ∗, Rey (Gaviglio 1987);
+, Subramanian & Antonia (1981) Reθ = 990; ◦, Subramanian & Antonia (1981) Reθ = 7100;

, incompressible simulation of Bell & Ferziger (1993).
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Figure 14. Turbulent Prandtl number, Prt, versus y/δ: , time average DNS data; ×,
incompressible heated wall simulations of Bell & Ferziger (1993).

layer, and the turbulent Prandtl number is about 0.7 except near the wall (y/δ < 0.2)
where it is near 1. The current results for the velocity–temperature correlation are in
disagreement with the available data from compressible boundary layer experiments
(figure 13), which show the correlation to be close to 1 (approximately 0.9), in
agreement with predictions of the SRA.
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The reason for this disagreement between simulations and experiments is not clear,
but is of great interest. The speculations of Gaviglio (1987) that the large correlation
values observed in experiments are due to acoustic waves suggests the possibility
that the acoustics are somehow different (weaker) in the simulations. However, tests
for numerical artifacts (e.g. damping) in the simulated acoustics did not reveal any
problems, and our radiated sound pressure magnitude compares well with that of
Laufer (1964). Another interesting observation is that in the current simulations
both the velocity–temperature correlations and the turbulent Prandtl number agree
reasonably well with data from incompressible boundary layers, both experimental
and computational (see figures 13b and 14). This might be expected, given the weak
compressibility of the boundary layer at this Mach number. This agreement at least
makes plausible the proposition that the current simulation results are physical,
despite disagreement with compressible experiments. The basis for comparison with
the incompressible heated wall in figure 13(b) is that the heated wall produces a
temperature gradient of the same sign as that obtained in the current simulation.

Further analysis suggests that the key to the discrepancy is the magnitude of
the total temperature fluctuations. In the experiments, it is total temperature and
momentum that are measured directly, with other quantities computed using several
approximate relations. By using these relations in the simulation data it was found
that (a) they yield accurate values for the derived quantities; and (b) when the total
temperature fluctuations in the simulations are reduced by a factor of 2, the relations
used in the experiments yield correlations Ru′′1T ′′ consistent with the experiments.
The total temperature fluctuations in the experiments are indeed approximately a
factor of 2 lower than the simulations (Kistler 1959). A factor of 2 error in the
total temperature is much larger than the uncertainties in either the experiments or
the simulation, so there is clearly something wrong with one or the other (or both).
A potentially useful approach to settling this question would be to use a physical
model of the experimental probes in the simulations, and process the resulting signals
as is done in the experiments, to see if results consistent with the experiments are
recovered. Until this issue is resolved, it would be wise to view both the experimental
and computational results on these quantities with some suspicion.

Of the three relations shown, only the RMS relation (4.9a) is very nearly satisfied.
The question arises as to how this relationship can be satisfied even though total
temperature fluctuations are of the same order as temperature fluctuations. This
success of (4.9a) can be explained by rearranging the definition of total temperature
fluctuations (4.5) as follows:

T ′′2 + T ′′2t − 2T ′′t T ′′

T̃ 2
= (γ − 1)2M4

a

u′′21

ũ2
1

. (4.11)

The condition that must be satisfied for (4.9a) to be valid when total temperature
fluctuations are not neglected is

T ′′2

T̃ 2
� T ′′2t − 2T ′′t T ′′

T̃ 2
, (4.12)

which the simulation data confirms (figure 15). While all the terms on the left-hand
side of (4.11) are of the same order, in the inner portion of the boundary layer the
term on the left-hand side of (4.12) is nearly a factor of 6 greater than the term on
the right. So the success of (4.9a) is due to a relationship between total and static
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Figure 16. Comparison of Ru′′1T ′′ from (4.15) to simulation data: , time average of DNS data;

, profile predicted by (4.15); , profile predicted by the modified Reynolds analogy of
Huang et al. (1995).

temperature fluctuations rather than the assumption of negligible total temperature
fluctuations.

Gaviglio (1987) has shown that fluctuations in total and static temperature can be
directly related to the correlation coefficient Ru′′1T ′′ if (4.9a) is assumed to be valid.
The RMS of the linearized definition of total temperature, (4.5), is

(T ′′2t )1/2 =

(
T ′′2 +

ũ2
1

C2
p

u′′21 + 2
ũ1

Cp
(T ′′2)1/2(u′′21 )1/2Ru′′1T ′′

)1/2

, (4.13)

where the last term was written in terms of Ru′′1T ′′ . Now if we say that (4.9a),

(T ′′2)1/2 =
ũ1

Cp
(u′′21 )1/2, (4.14)

is empirically valid then (4.13) becomes

Ru′′1T ′′ =
T ′′2t
2T ′′2

− 1. (4.15)

As expected in the case of negligible total temperature fluctuations this equation
reduces to Ru′′1T ′′ = −1. The value of Ru′′1T ′′ predicted by (4.15) agrees well with the
actual values (figure 16).
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Since for incompressible flow −Ru′1T ′ is significantly less than unity, the correlation
coefficient between streamwise momentum fluctuations and temperature fluctuations,
−Rm′1T ′ , will also be much less than unity for incompressible flow (the two are in fact
equal). For the compressible simulation, however, −Rm′1T ′ is much closer to 1 (figure
17). This is because −Rm′1T ′ is a weighted average of Ru′1T ′ and Rρ′T ′ , and Rρ′T ′ is very
close to 1 (dashed curve in figure 17) since pressure fluctuations may be assumed
to be small compared to density and temperature fluctuations in the equation of
state (Lele 1994). The contribution of Rρ′T ′ to the weighted average pushes −Rm′1T ′
towards unity. The close correlation between streamwise momentum and temperature
fluctuations may indicate a greater similarity between the transport equations for
turbulent momentum and heat transport than in the incompressible case, which may
be due to a reduction in the importance of the pressure gradient term.

4.2. ‘Modified Reynolds analogies’

Both Gaviglio (1987) and Huang et al. (1995) point out that for flows with non-
adiabatic boundaries the agreement between (4.9a) and measurements is poor. Both
authors propose new relationships between temperature and velocity fluctuations
which have been called ‘modified’ Reynolds analogies. Since the agreement of this
relation with the current adiabatic wall simulations is not perfect either, we now assess
these modified Reynolds analogies. The modified Reynolds analogies of Rubesin
(1990), Gaviglio (1987) (GSRA), and Huang et al. (1995) (HSRA) all have the form

(T ′′2)1/2/T̃

(γ − 1)M̄2(u′′21 )1/2/ũ1

≈ 1

c(1− a(∂T̃ t/∂T̃ ))
. (4.16)

If a = 0 and c = 1 then the standard SRA is obtained. For all the modified
expressions a = 1. Rubesin used c = 1.34. Gaviglio and Huang et al. use the mixing
length hypothesis to obtain c = 1.0 and c = Prt, respectively. The difference between
the derivation of Gaviglio and Huang et al. is that Gaviglio assumes that the mixing
lengths for temperature and velocity fluctuations are equal. In figure 18 the ratio of
the left-hand side of (4.16) to the right-hand side is plotted for the SRA, GSRA, and
HSRA. The version presented by Huang et al. (1995) is in excellent agreement with
the data throughout the boundary layer. The value of Ru′′1T ′′ that is predicted by the
modified analogy of Huang et al. can be derived by substituting equation (4.16), with
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c = Prt, into (4.13) to obtain

[T ′′2t /T ′′2 − 1]

[2Prt(1− ∂T̃ t/∂T̃ )]
− Prt

2

(
1− ∂T̃ t

∂T̃

)
= 1 + Ru′′1T ′′ . (4.17)

The profile for Ru′′1T ′′ predicted by (4.17) agrees well with the simulation data (figure
16).

Why does the expression of Huang et al. work so well? Substituting the definition
of the turbulent Prandtl number, (4.9c), and the derivative of the total temperature,

∂T̃ t

∂y
=
∂T̃

∂y
+
ũ1

Cp

∂ũ1

∂y
, (4.18)

into (4.16), with c = Prt, we obtain

ρu′′2T ′′

(T ′′2)1/2
= − ρu′′2u′′1

(u′′21 )1/2
. (4.19)

This relationship expresses an analogy between the rates of turbulent heat and
momentum transfer normalized by the property that is transported. We may divide
through by the RMS of the wall-normal velocity fluctuations to obtain a relationship
between the correlation coefficients Ru′′2T ′′ and Ru′′1u′′2 :

Ru′′2T ′′ = −Ru′′1u′′2 , (4.20)

where it is assumed that the correlations ρ′u′′2u′′1 and ρ′u′′2T ′′ are small compared to

ρ̄u′′2u′′1 and ρ̄u′′2T ′′. The simulation results indicate that the two correlation coefficients
are very nearly equal throughout the boundary layer (figure 19).

4.3. Turbulent Prandtl number

Morkovin was aware that total temperature fluctuations are not negligible compared
to temperature fluctuations and stated that another set of expressions could be
developed by assuming that ρu′′2T ′′t is much smaller than ρu′′2T ′′. In the lower half of
the boundary layer (y/δ < 0.5) this is a good assumption (figure 20).

Using this assumption, an expression can be developed for the turbulent Prandtl
number. Multiplying (4.5) by ρu′′2 and averaging gives

ρu′′2T ′′t = ρu′′2T ′′ +
ũ1

Cp
ρu′′2u′′1 . (4.21)
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Neglecting ρu′′2T ′′t relative to ρu′′2T ′′ yields

ρu′′2u′′1
ρu′′2T ′′

= −Cp
ũ1

. (4.22)

Substituting (4.18) into (4.22) gives

Prt =
ρu′′2u′′1
ρu′′2T ′′

(∂T̃ /∂y)

(∂ũ1/∂y)
=
∂T̃

∂y

(
∂T̃

∂y
− ∂T̃ t

∂y

)−1

. (4.23)

This prediction agrees with the simulation data in the inner portion of the boundary
layer, but as the boundary layer edge is approached the agreement becomes poor
(figure 21).

5. Turbulent kinetic energy budget
For the benefit of those formulating turbulence models, the budgets for both

the Reynolds stresses and the turbulent kinetic energy have been calculated. In
this section, the turbulent kinetic energy budget is presented and compared with
the incompressible simulations of Spalart (1988). The Reynolds stress budgets are
presented in Guarini (1998). Favre averages are used in the analysis to simplify the
resulting equations.
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Figure 21. Turbulent Prandtl number Prt vs. y/δ: , time average DNS data;
, Prt from (4.23).

The turbulent kinetic energy is defined as:

k̄ =
1

2

ρu′′i u′′i
ρ̄

, (5.1)

and the turbulent kinetic energy equation is, after assuming homogeneity in the x-
and z-directions, given by

∂

∂t
(ρ̄k̄) + ũ2

∂

∂x2

(ρ̄k̄) = P + T +Π + D − φ+ Vc. (5.2)

The symbols are defined as

P = −ρu′′i u′′2 ∂ũi∂x2

, (5.3a)

T = −1

2

∂

∂x2

ρu′′i u′′i u′′2 , (5.3b)

Π = Πt +Πd = − ∂

∂x2

(u′′2p′) + p′
∂u′′i
∂xi

, (5.3c)

D =
∂

∂x2

u′′i
Re
τ′i2, (5.3d)

φ =
τ′il
Re

∂u′′i
∂xl

, (5.3e)

Vc = −u′′2 ∂p∂x2

+ u′′i
∂τil

∂xl
− ρ̄k̄ ∂ũ2

∂x2

. (5.3f)

The terms in (5.2) can be interpreted as follows: the left-hand side is the substantial
derivative of the turbulent kinetic energy along a mean streamline; P is the rate of
generation of turbulent kinetic energy by mean velocity gradients; T is turbulent
transport; Π are the pressure terms (pressure diffusion and pressure dilatation,
respectively); D is viscous diffusion; −φ is viscous dissipation per unit volume; and
finally, Vc includes the terms that arise when the density is not constant. The first
two terms of Vc are due to the difference between the Favre and Reynolds average
and the last term is the production term due to dilatation. The pressure dilatation
as well as the dilatational dissipation, which are not included in Vc, are also due
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Figure 22. Turbulent kinetic energy budget: , simulation data; , Spalart’s data
Reθ = 1410; , Spalart’s data Reθ = 670. Symbols are: C , Convective term; P , Generation
term; T , Turbulent transport; Π , Pressure terms; D, Viscous transport; −φ, Viscous dissipation.

to non-constant density. In the literature the dissipation per unit mass is commonly
referred to as ε. Here we use the dissipation per unit volume, which we denote as
φ for clarity. The dissipation and pressure terms are in a form similar to that given
in Huang et al. (1995). The compressible turbulent kinetic energy budget agrees with
the incompressible results of Spalart at two different Reynolds numbers (figure 22).
The generation term is larger than in the incompressible simulation, and the viscous
transport and turbulent transport terms are also greater in magnitude than in the
incompressible simulation. Vc is small and has not been included on the plot for
clarity. Its maximum value is a factor of 25 smaller than that of the generation term.

The effects of compressibility on the dissipation have been of interest in the
literature, especially in the context of compressible turbulence models (Zeman 1990
and Sarkar et al. 1991). To study dissipation in the current simulation, consider φ
which can be expanded as

φ =
µ̄

Re

∂u′i
∂xl

(
∂u′i
∂xl

+
∂u′l
∂xi
− 2

3
δil
∂u′k
∂xk

)
+
µ′

Re

∂u′i
∂xl

(
∂u′i
∂xl

+
∂u′l
∂xi
− 2

3
δil
∂u′k
∂xk

)

+
µ′

Re

∂u′i
∂xl

(
∂ūi

∂xl
+
∂ūl

∂xi
− 2

3
δil
∂ūk

∂xk

)
, (5.4)

where the three terms in this expression will be referred to as φ1, φ2, and φ3,
respectively. The fluctuations about the Favre average in (5.3e) have been replaced
using the identity

τ′il
Re

∂u′′i
∂xl

=
τ′il
Re

∂u′i
∂xl

. (5.5)

The terms, φ2 and φ3, which involve viscosity fluctuations, are negligible compared
to φ1 in this simulation.

The first term, φ1, can be decomposed into parts that are more amenable to
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Figure 23. Comparison of dissipation terms: , −φ1 = −(φs + φi + φd); , solenoidal
dissipation (−φs); , dissipation due to inhomogeneity (−φi); , dissipation due to
dilatation −φd; +, Spalart’s data Reθ = 1410; ∗, Spalart’s data Reθ = 670.

comparison with incompressible flows by expressing velocity gradients in terms of the
rate-of-deformation tensor, S ′li, and spin tensor, Ω′li, which is related to the vorticity
through Ω′ijΩ′ij = ω′iω′i/2. Simplifying gives for φ1:

φ1 =
µ̄

Re
ω′iω′i + 2

µ̄

Re

(
∂2

∂xi∂xl
u′iu′l − 2

∂

∂xl
u′l
∂u′i
∂xi

)
+

4

3

µ̄

Re

∂u′i
∂xi

∂u′k
∂xk

, (5.6)

where the first term on the right is the homogeneous incompressible dissipation, or
the solenoidal part of the dissipation, φs, the second term, φi, is due to inhomogeneity,
and the third term, φd, is due to dilatation. Both the dissipation due to dilatation
and inhomogeneity are very small compared to the solenoidal dissipation (figure 23).
At the wall the dissipation due to inhomogeneity provides a very slight contribution
to the total dissipation. The compressible result agrees well with the incompressible
results of Spalart.

Finally, we consider the pressure terms. There are three: pressure diffusion (Πt),
pressure dilatation (Πd), and compressibility (Πc). The pressure dilatation term is also
associated with compressibility effects, since the dilatation is zero for an incompressible
flow. The three pressure terms are

Πt = −∂u
′′
2p
′

∂x2

, Πd = p′
∂u′′i
∂xi

, Πc = −u′′2 ∂p̄∂x2

. (5.7a–c)

Of the three, Πd and Πc are much smaller than Πt near the wall (figure 24). In
fact, the sum of the pressure terms is almost indistinguishable from Πt in the wall
region, which shows that the compressibility terms have very little effect on the overall
contribution of the pressure terms to the turbulent kinetic energy budget. Away from
the wall, all the terms are small and the compressibility term contributes to the sum
of the terms. The pressure diffusion term is larger than the value obtained by Spalart
in both his Reθ = 1410 and Reθ = 670 cases.

The results and analysis given here show that at M = 2.5, the effects of compress-
ibility on the turbulent kinetic energy balance are not due to the new compressibility
terms that appear in the equations. Instead, the effects are more subtle, quantitatively
affecting the terms that appear in the incompressible case.



Supersonic turbulent boundary layer 25

–0.01

0

0.01

0.03

0 10 20 30 40

yuτ/î

¦
t, 

¦
d,

 ¦
c

0.02

Figure 24. Comparison of pressure terms: , Πt +Πd +Πc; , Πt; , Πd;
, Πc; +, Spalart’s data Reθ = 1410; ∗, Spalart’s data Reθ = 670.

6. Conclusions
A direct numerical simulation of a Mach 2.5 turbulent boundary layer was carried

out using the method described in the Appendix. The Reynolds number of the
simulation was Reθ′ = 849. Comparison with available experiments and with other
simulations (i.e. those of Spalart) suggest that the current simulation provides an
accurate description of a compressible turbulent boundary layer.

It was shown that many of the scaling relations used to express compressible
boundary layer statistics in terms of those for incompressible boundary layers are
consistent with the current simulation. In particular, we have shown that the Van
Driest transformed velocity behaves much the same as the streamwise velocity in
the incompressible case. There was a small logarithmic region with κ = 0.40 and
C = 4.7. It was also shown that the RMS velocity fluctuations are collapsed with
incompressible results by the mean density scaling suggested by Morkovin. When this
scaling is applied, the data from the current simulation agree remarkably well with
Spalart’s Reθ = 670 and Reθ = 1410 simulations. The mean density scaling of u′v′
also results in a fairly good collapse with incompressible results.

An inconsistency with the standard analysis of compressible turbulent boundary
layers was found in that the total temperature fluctuations were of the same order
as temperature fluctuations. This invalidates many of the assumptions made in
deriving the strong Reynolds analogy (SRA). However, the relationship between RMS
temperature and streamwise velocity fluctuations, (4.9a), agreed with the simulation
data reasonably well nonetheless. A condition for the validity of the RMS relationship
in the presence of significant total temperature fluctuations was derived, (4.12), and
this condition is satisfied by the simulation data. An expression for the correlation
coefficient Ru′′1T ′′ derived by Gaviglio (4.15) using the RMS relationship agrees very
well with the simulation data.

The low value of the correlation coefficient found in the simulations indicates that
instantaneous relationships between temperature and velocity fluctuations, (4.8) for
example, are invalid. Experimental evidence, however, suggests a much higher value
of the correlation coefficient than was found in this simulation. It appears that this
difference between experiments and the current simulation can be due to a difference
of about a factor of 2 in the magnitude of the total temperature fluctuations, with
the experimental values being smaller. The reason for this is not known.

The modified Reynolds analogy of Huang et al. showed better agreement with
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the simulation data than Gaviglio’s modified Reynolds analogy and the original
expression of Morkovin. Using Huang et al.’s modified analogy, a relationship between
the rate of turbulent heat transfer and turbulent momentum transfer was derived and
shown to agree with the simulation data. The streamwise momentum and temperature
fluctuations were found to be very highly correlated throughout the boundary layer
with a correlation coefficient 0.88 6 −Rm′1T ′ 6 1. This is in contrast to the low
correlation between the velocity and thermal fields away from the wall and also stands
in contrast to the lack of correlation between streamwise momentum and temperature
in the incompressible case (where velocity and momentum are proportional).

The turbulent kinetic energy budget was calculated and compared with those
of Spalart’s incompressible simulations. The peak rate of production was found to
be larger than for the incompressible case. This is balanced by an increase in the
magnitude of turbulent transport and viscous transport when compared to the incom-
pressible simulations. Some of this difference might be attributable to the different
small-scale resolution used in these two simulations, with the current simulation hav-
ing better resolution than the simulations of Spalart. Balances for the terms in the
Reynolds stress tensor have been computed and are presented in Guarini (1998).

The authors would like to thank NASA’s Numerical Aerodynamic Simulation
facility (NAS) and the Air Force Aeronautical Systems Center (ASC) Major Shared
Resource Center (MSRC) for their computational support. The simulation and code
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and AFOSR grant F49620-97-1-0089 is gratefully acknowledged by the first and
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Appendix. Theoretical development
In this appendix we review Spalart’s transformation and apply it to the compressible

boundary layer. This involves the development of a generalized coordinate system in
which boundary layer growth is minimal, the definition of the two scales involved in
the problem, the transformation of the Navier–Stokes equations to the new curvilinear
coordinate system, and the calculation of the slow-growth terms. This analysis for
the compressible case mirrors that developed by Spalart (Spalart & Leonard 1987;
Spalart 1988) for the incompressible boundary layer. The particulars of that analysis
that are directly relevant to the current development are recalled briefly in §A.2 and
§A.3 to fix the ideas and the nomenclature.

A.1. Equations

The form of the Navier–Stokes equations is chosen for computational convenience.
The energy equation is transformed so that pressure is a state variable instead of
energy. The fluid variables, ui, mi = ρui, p, and σ = (1/ρ) are non-dimensionalized by
ao, ρoao, ρoa

2
o, and (1/ρo), respectively. Lengths are non-dimensionalized by δo and

times by (δo/ao). Then the Navier–Stokes equations become

∂σ

∂t
= σ2 ∂mj

∂xj
, (A 1a)

∂mi

∂t
= − ∂

∂xj
(σmimj)− ∂p

∂xi
+

1

Re

∂τij

∂xj
, (A 1b)

∂p

∂t
= −∂puj

∂xj
− (γ − 1)p

∂uj

∂xj
+

(
γ − 1

Re

)
τij
∂ui

∂xj
+

1

RePr

∂qj

∂xj
. (A 1c)
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The Reynolds number is Re = (ρoaoδo)/µo and the Prandtl number is Pr = (µCp)/k.
The Fourier heat conduction law, qj , is given by

qj = µ
∂T

∂xj
, (A 2)

and the stress, τij , is

τij = µ

(
∂ui

∂xj
+
∂uj

∂xi
− 2

3
δij
∂uk

∂xk

)
. (A 3)

The temperature, T , is non-dimensionalized by To ≡ a2
o/(γR), such that the equation

of state, T = γσP , results.

A.2. Coordinate system

Following Spalart (Spalart & Leonard 1987; Spalart 1988), the Navier–Stokes equa-
tions are transformed into a coordinate system that is fitted to the growing boundary
layer. The new coordinate system is (ξ,η,z), where

ξ = x and η = η(x, y). (A 4)

Curves of η = const. are slightly inclined to the wall with a slope S̃ (ξ, η) chosen in
such a way that we fit the growth of both the boundary layer and the viscous sublayer.
This coordinate system is selected so that when a small section of the boundary layer
is simulated, the variation of the mean fluid dynamic variables along a constant-η
curve is so small that approximate homogeneity will hold.

The Jacobian of the transformation involves two parameters, S̃ and T̃ , where

S̃ ≡ ∂y

∂ξ

∣∣∣∣
η,z

and T̃ ≡ ∂y

∂η

∣∣∣∣
ξ,z

. (A 5)

The quantity S̃ gives the slope of the constant-η curves, while T̃ is the local stretching
between the y- and η-coordinates, and S̃ η = T̃ ξ follows from (A 5). In terms of S̃ and

T̃ , the Jacobian is given by ∂/∂x
∂/∂y
∂/∂z

 =

 1 −S̃/T̃ 0
0 1/T̃ 0
0 0 1

 ∂/∂ξ
∂/∂η
∂/∂z

 . (A 6)

A.3. Multiple-scale analysis

Even in the transformed coordinate system, the mean variables evolve slowly in ξ. The
fluctuations also have a slow variation in intensity at constant η. Thus, for example,
we approximate

u′(ξ, η, z, t) = Au(ξ, η)up(ξ, η, z, t), (A 7)

where Au is a slowly varying amplitude and up is homogeneous, so that in the
simulation it can be treated as periodic in ξ. The subscript on A refers to the
fluid dynamic variable with which it is associated. The fluctuations of the other
state variables may be similarly decomposed. After introducing a slow variable
Ξ = εξ and a fast variable ξ, and using the techniques of multiple-scale asymptotics,
decomposition of the velocity into a mean and fluctuating part yields

u(ξ, Ξ, η, z, t) = U(Ξ, η) + Au(Ξ, η)up(ξ, η, z, t), (A 8)
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and the derivative in the streamwise direction becomes

∂u

∂ξ
= ε

∂U

∂Ξ
+ Au

∂up

∂ξ
+ εup

∂Au

∂Ξ
. (A 9)

Using (A 7) this can be rewritten in the compact form

uξ = εUΞ + u′ξ + εu′Ξ, (A 10)

where u′Ξ = AuΞu
′/Au.

To allow u′Ξ = AuΞu
′/Au to be determined in the actual simulation, note that

AuΞ

Au
=

(u′rms)Ξ
u′rms

. (A 11)

The coordinate system is also slowly varying in ξ and hence y = y(Ξ, η), so that
(A 5) is rewritten as

S̃ = ε
∂y

∂Ξ

∣∣∣∣
η,z

and T̃ =
∂y

∂η

∣∣∣∣
Ξ,z

. (A 12)

The simulations can be regarded as being performed at a fixed value Ξ = Ξ0 of the
slow variable. We are then free to choose η such that y(Ξ0, η) = η which implies
T̃ (Ξ0, η) = 1. We define S such that S̃ = εS .

A.4. Modified Navier–Stokes equations

Using the definitions above and replacing derivatives in ξ with slow and fast deriva-
tives gives the transformed Navier–Stokes equations, that contain several additional
terms, shown enclosed in square brackets:

∂σ

∂t
= σ2 ∂mj

∂ξj
+ ε

[
−Sσ2 ∂m1

∂η

]
+ ε[−(σ̄Ξ + σ′Ξ)σm1 + σ(UΞ + u′Ξ)], (A 13a)

∂m1

∂t
= − ∂

∂ξj
(σm1mj)− ∂p

∂ξ
+

1

Re

∂τ1j

∂ξj
+ ε

[
S
∂

∂η
(u1m1) + S

∂p

∂η

]
+ε[(σ̄Ξ + σ′Ξ)m2

1 − 2(UΞ + u′Ξ)m1 − (p̄Ξ + p′Ξ)], (A 13b)

∂m2

∂t
= − ∂

∂ξj
(σm2mj)− ∂p

∂η
+

1

Re

∂τ2j

∂ξj
+ ε

[
S

2

∂

∂η
(u1m2 + u2m1)

]
+ε[(σ̄Ξ + σ′Ξ)m1m2 − (UΞ + u′Ξ)m2 − (VΞ + v′Ξ)m1], (A 13c)

∂m3

∂t
= − ∂

∂ξj
(σm3mj)− ∂p

∂z
+

1

Re

∂τ3j

∂ξj
+ ε

[
S

2

∂

∂η
(u3m1 + u1m3)

]
+ε[(σ̄Ξ + σ′Ξ)m1m3 − (WΞ + w′Ξ)m1 − (UΞ + u′Ξ)m3], (A 13d)

∂p

∂t
= −∂puj

∂ξj
− (γ − 1)p

∂uj

∂ξj
+ (

γ − 1

Re
)τij

∂ui

∂ξj
+

1

RePr

∂qj

∂ξj

+ε

[
S
∂

∂η
(pu1) + S(γ − 1)p

∂u1

∂η

]
+ ε[−(p̄Ξ + p′Ξ)σm1 − (UΞ + u′Ξ)γp].

(A 13e)
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Note that all additional viscous terms have been neglected, since they are all multiplied
by (S/Re), which is small. In particular, near the wall, where the viscous terms are
large, the value of S is approximately zero. The terms in square brackets are the
corrections to the original Navier–Stokes equations that account for boundary layer
growth. In each equation the first set of bracketed terms results from the coordinate
transformation and the second set results from the multiple-scale analysis. These
equations will be solved in a finite domain in the fast variable ξ. Thus, in the solution
domain, functions of the slow variable Ξ can be taken as constant (functions of y)
and the fluctuating quantities can be taken as homogeneous in the fast variable.

A.5. Slow derivatives of mean quantities

Before the modified equations (A 13) can be solved numerically, the slow derivatives
must be determined in terms of the simulation solution variables. For any arbi-
trary slowly varying function f, fΞ = fξ/ε. In what follows, it will be convenient to
determine relations for fξ rather than fΞ . The slow derivatives of the mean thermo-
dynamic quantities are calculated using the Van Driest (1955) temperature–velocity
relationship as given by Walz (Fernholz & Finley 1980),

T̄

T̄∞
= 1 + r

γ − 1

2
M2
∞

[
1−

(
ū

ū∞

)2
]
, (A 14)

where the recovery factor, r, is taken to be r = 0.896. Equation (A 14) was found to be
valid a posteriori in the simulations. Differentiating (A 14), the temperature derivative
is expressed in terms of the mean velocity:

T̄ ξ

T̄∞
= −r(γ − 1)M2

∞

(
ū

ū∞

)(
ūξ

ū∞

)
. (A 15)

Since the pressure gradient, p̄ξ , is zero we get

ρ̄ξ

ρ̄
= − T̄ ξ

T̄
. (A 16)

Introducing means and fluctuations into the relationship σρ = 1, averaging, and
neglecting σ′ρ′ gives after differentiation

σ̄ξ

σ̄
= − ρ̄ξ

ρ̄
. (A 17)

Thus all the slow derivatives of mean thermodynamic variables are related directly
to the slow derivative of the mean streamwise velocity.

For his incompressible simulation at the first station, Spalart used the well-known
scaling laws for the mean streamwise velocity to calculate its slow derivatives. There is
no equivalent scaling for compressible flow. However, the Van Driest transformation
allows one to define a transformed velocity which satisfies the incompressible scalings.
This transformation was found to be valid a posteriori in the simulations (see § 3.1). In

the definition of the van Driest transformed velocity, Uc (3.2),
√
T̄ w/T̄ is a function

of ξ and U. Differentiating (3.2) with respect to ξ yields

∂Uc(ξ, η)

∂ξ
=

∫ U(ξ,η)

0

∂

∂ξ

(
T̄ w

T̄

)1/2

dU +

(
T̄ w

T̄

)1/2 ∣∣∣∣
U(ξ,η)

∂U(ξ, η)

∂ξ
. (A 18)

Now, the Van Driest temperature–velocity relationship (A 14) implies that tempera-
ture is a function of U alone provided the recovery factor, r, is independent of ξ.
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Experiments have verified that this assumption is valid (Fernholz & Finley 1980).
The first term in (A 18) is therefore zero yielding

Uξ =

(
T̄

T̄ w

)1/2

Ucξ . (A 19)

To obtain Ucξ (or Uξ) for use in the modified Navier–Stokes equations (A 13), the
strategy is to develop a relationship between Ucξ and Uc using well-known model
profiles for the velocity Uc. Then Ucξ can be calculated from Uc as determined in the
simulation. Note that model profiles discussed below are used only to evaluate slow
derivatives. The mean velocity profile is determined from the simulation not from the
model profiles.

To develop an expression for Ucξ , a model profile for Uc that is valid across the
entire boundary layer is needed. Since Uc is the Van Driest transformed velocity, we
can use a model profile for the incompressible boundary layer, in particular, we use
the relation of Coles (1956):

Ucm

uτ
=

{
Ucb/uτ + (Π/κ)w(y/δ), y 6 δ,

Uc∞/uτ, y > δ,
(A 20)

where Ucb is a basic law-of-the-wall profile and w(y/δ) is a wake function. In order to
distinguish the model profile from that of the simulation, the model profile is denoted
by Ucm . For the basic profile and wake function we use the relations of Reichardt
(1951) and Finley (Cebeci & Bradshaw 1977), respectively:

Ucb

uτ
=

1

κ
ln

(
1 + κ

yuτ

νw

)
+ C1

[
1− e−yuτ/(η1νw) −

(
yuτ

η1νw

)
e−yuτb/νw

]
, (A 21)

and

Πw
(y
δ

)
=
(y
δ

)2 −
(y
δ

)3

+ 6Π
(y
δ

)2 − 4Π
(y
δ

)3

. (A 22)

Several of the constants in these expressions are prescribed, that is C1 = −(1/κ) ln (κ)+
C , η1 = 11, and b = 0.33. The constants, uτ, κ, and C are calculated from the simulation
mean velocity profile at each time step. This leaves two parameters, δ and Π , which
are determined by matching the properties of the model profile to the instantaneous
simulation mean velocity profile. This profile is a good representation of the mean
velocity throughout the boundary layer (see figure 5). Reichardt’s profile is used
instead of the classic profile of Coles because it captures both the linear sub-layer
behaviour, where U+

c = y+, and also the logarithmic behaviour of the mean velocity
profile. The standard log-law becomes infinite at the wall which is undesirable in a
simulation.

The parameters, δ and Π are set so that the free-stream velocity Uc∞ and the
transformed displacement thickness of the model profile Ucm match those in the
simulation. Thus we have

Uc∞ = Ucm(δ), (A 23a)∫ ∞
0

(
1− Uc

Uc∞

)
dy =

∫ δ

0

(
1− Ucm

Uc∞

)
dy. (A 23b)

These relations lead to a nonlinear system of equations for δ and Π (see Guarini
1998).
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The slow derivative Ucξ can be written as

Ucξ

uτ
=
uτξ
uτ

(
Uc

uτ

)
+

∂

∂ξ

(
Uc

uτ

)
. (A 24)

Using the model profile to evaluate the derivative, (A 24) can be written

Ucξ

uτ
=
uτξ
uτ

(
Uc

uτ

)
+
∂Ucm

∂δ
δξ +

∂Ucm

∂uτ
uτξ +

∂Ucm

∂Π
Πξ, (A 25)

leaving just uτξ , δξ , and Πξ to be determined. It is known that Π becomes independent
of Reynolds number for Reθ > 5000 (Cebeci & Bradshaw 1977) and that the variation
of Π for lower Reynolds numbers is very small, thus the approximation Πξ = 0 is
used. Since Uc∞ξ = 0, (A 25) can be evaluated at y = δ to obtain a relation between

uτξ/uτ and δξ/δ:

uτξ
uτ

= − (u2
τδ/Uc∞νw){(1 + κδuτ/νw)−1 + R}

(u2
τδ/Uc∞νw){(1 + κδuτ/νw)−1 + R}+ 1

(
δξ

δ

)
, (A 26)

where

R =
C1

η1

[
e−δuτ/(νwη1) +

(
δuτb

νw
− 1

)
e−δuτb/νw

]
, (A 27)

and the assumption S(y = δ) = δξ/δ has been made. To find δξ/δ, the momentum
integral equation, and the assumption δξ/δ = θξ/θ (constant shape factor) is used to
obtain

δξ

δ
=

τw

θρ̄∞U2∞
. (A 28)

This closes the system of equations for Ucξ/uτ.
Since the slowly varying amplitude functions are proportional to the RMS fluctu-

ations, we can calculate the slow derivative of the velocity fluctuations by assuming
a similar scaling law as was used by Spalart for his simulations, which yields

Aviξ

Avi
=
uτξ
uτ
. (A 29)

Since the simulation results show that the scaling used in the incompressible case
is modified by the mean density profile, (A 29) could be improved by including this
scaling.

To determine the metric S we take the first derivative with respect to ξ of the
following expression given by Spalart (1988):

ηs =
y
p
2(c4y

+) + yp(y/δ)

y
p
2 + yp

, (A 30)

where y2 = (y1y3)
1/2, y1uτ/νw = c1, y3/δ = c2, and p = c3/ log10(y3/y1). Spalart’s

choices for the constants c1, c2, c3, and c4 are 0.5, 0.3, 5.0, and 0.001, respectively; ηs is
a weighted average of wall units and y/δ units. It should be noted that the quantity
ηs is not the same as η and does not satisfy the conditions y = η and T = 1 at the
station of the simulation. Nonetheless, ηs can be used to calculate S̃ since it follows
the growth of the boundary layer and viscous sublayer (see Spalart 1988).

All the slow terms in (A 13) can now be determined from the simulated quantities,
thus closing the equations.
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